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Abstract

Fingerprint recognition is currently one of the most com-001
monly used biometric recognition technologies. At present,002
automatic fingerprint recognition systems have high accu-003
racy in identifying fingerprints with good image quality.004
However, for low-quality fingerprint images, due to the005
presence of a large amount of noise interference, it is dif-006
ficult to correctly extract features and the recognition ac-007
curacy is low. Therefore, we propose a fingerprint image008
super-resolution reconstruction algorithm based on a gen-009
erative adversarial network with dense connection pyra-010
mids to address the issue of low accuracy in low-quality011
fingerprint recognition. Firstly, in order to maximize infor-012
mation sharing between convolutional layers, dense con-013
nection blocks are added to the generator. Secondly, the014
network adds pyramid blocks containing convolutional ker-015
nels of different sizes between Dense blocks, and extracts016
features at different levels using convolutional kernels of017
different sizes. Finally, this article proposes to reconstruct018
super-resolution reconstructed images of different magnifi-019
cations based on parallel feature maps in a model. This020
multi magnification architecture can have the advantage of021
sharing underlying information during the training process.022

1. Introduction023

Fingerprint recognition as shown in Fig.1, an impor-024
tant branch of biometric recognition technology for iden-025
tity recognition, has a long technological development026
history[20]. Despite the impressive results, the recogni-027
tion performance for low-quality fingerprint images with028
low resolution and noises which often have unclear ridge029
structures and uneven image contrast remains suboptimal.030
Enhancing the quality of fingerprint images is crucial for031
reliable identification, and a widely adopted method is032
through fingerprint enhancement, which removes noise and033
accentuates the ridge patterns. Numerous algorithms aim034
to improve image fidelity by reducing background noise035
and boosting ridge contrast, leading to enhanced recogni-036
tion capabilities. Although these enhancement techniques037

Figure 1. Fingerprint samples under different reconstruction reso-
lutions: (a) 250 dpi, (b) 500 dpi, (c) 750 dpi, and (d) 1000 dpi.

[3, 5, 7, 18, 29] diminish noise and clarify details for more 038
precise identification, they do not reconstruct the fine ridge 039
details by augmenting the resolution of the image itself. 040

Currently, most fingerprint collection devices have a res- 041
olution of 500 dpi (Dots Per Inch). However, many low- 042
cost or miniaturized sensors capture images at resolutions 043
below 500 dpi. Low-resolution fingerprint images result in 044
the loss of detailed features, thereby affecting fingerprint 045
recognition performance[28]. Therefore, the issue of fin- 046
gerprint super-resolution reconstruction[12, 24] remains a 047
significant challenge in fingerprint processing. Addition- 048
ally, when collecting infant fingerprints [1], the small area 049
of these prints means that sensors designed for 500 dpi adult 050
fingerprints capture images at resolutions less than 500 051
dpi, significantly reducing recognition performance. Using 052
higher-resolution collection devices, on the other hand, en- 053
tails higher cost implications. 054

Despite numerous challenges in recognizing low-quality 055
fingerprint images, extensive research has focused on algo- 056
rithms for removing background noise and enhancing fin- 057
gerprint ridges to achieve better recognition performance. 058
While fingerprint enhancement can reduce image noise and 059
improve detail for more accurate recognition, it cannot re- 060
construct ridge details or recover them by increasing image 061
resolution. Moreover, there has been limited research fo- 062
cused on fingerprint image super-resolution reconstruction 063
(Super Resolution, SR) [12, 22]. Image super-resolution 064
[15] reconstruction refers to the process of enlarging a low- 065
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resolution (LR) image to a high-resolution (HR) image. It066
is a crucial image processing technique in computer vi-067
sion and image processing. Super-resolution reconstruction068
technology has been extensively researched and applied in069
computer vision tasks. The most critical issue in super-070
resolution reconstruction tasks is how to reconstruct the de-071
tails lost in low-resolution images.072

The swift advancement in deep learning [31]. has led to073
the emergence of various deep neural networks tailored for074
image super-resolution tasks. Among these, the SRCNN075
and its variant FSRCNN, were designed to perform an end-076
to-end mapping from bicubic-interpolated low-resolution077
images to their high-resolution counterparts. The success078
of residual CNNs in this domain inspired the adoption of079
the ResNet [13] architecture for image super-resolution, as080
proposed in recent studies. Moreover, the field has seen in-081
novations like a densely connected deep network [30] for082
single-image super-resolution, capitalizing on the integra-083
tion of features from various network layers to refine the084
reconstruction results. Recently, the integration of genera-085
tive adversarial networks (GANs) into the realm of super-086
resolution has marked a significant milestone [17].087

In the realm of computer vision, while a plethora of088
methods have been developed for image super-resolution,089
the specific area of fingerprint super-resolution remains un-090
derexplored [1, 22, 27]. To bridge this gap, this study intro-091
duces an innovative approach, the Dense Connected Pyra-092
mid Generative Adversarial Network (DCP-GAN), tailored093
for enhancing the resolution of fingerprint images across094
multiple scales. This approach leverages the strides made095
in deep learning for image super-resolution.096

The methodology encompasses two distinct stages: of-097
fline training and online testing. The offline training phase098
begins with the collection of a substantial dataset of high-099
resolution fingerprint images (1000 dpi), which form the100
foundation for generating lower resolution counterparts101
through a downsampling process. Following this, the DCP-102
GAN is meticulously designed. It features a sophisticated103
generator network with dense connected pyramidal archi-104
tecture, focused on the intricate task of image reconstruc-105
tion. Complementing this is a feature-consistent discrimi-106
nator, fine-tuned to enhance the model’s accuracy. The net-107
work undergoes rigorous super-resolution training utilizing108
paired datasets, honing its ability to discern and enhance hi-109
erarchical features in the transformation from low to high-110
resolution fingerprints. During the online testing phase, this111
meticulously trained super-resolution network is deployed112
to generate fingerprints of significantly enhanced resolu-113
tion. The primary contributions of this paper are summa-114
rized as follows.115

• We present a novel fingerprint image super-resolution116
framework based on a Generative Adversarial Network117
(GAN) structure. This framework is adept at learning and118

combining features across different levels, resulting in 119
a highly effective high-resolution fingerprint reconstruc- 120
tion. 121

• We introduce a dense connected pyramid generative ad- 122
versarial network specifically designed for the reconstruc- 123
tion of high-resolution fingerprint images. This deep net- 124
work comprises a dense connected pyramid generator for 125
image reconstruction and a feature-consistent discrimi- 126
nator. This marks the first application of GAN’s deep 127
network architecture in the realm of fingerprint super- 128
resolution. 129

• Our approach achieves state-of-the-art results in both vi- 130
sual inspection and fingerprint recognition performance. 131
This success is evident not only in adult FVC finger- 132
print databases but also in challenging child fingerprint 133
databases. The performance improvements escalate with 134
larger upscaling factors, making this the first work to 135
demonstrate that image super-resolution can effectively 136
enhance the recognition of challenging child fingerprints. 137

The rest structure of the paper is as follows: Section 2 138
describes the relevance work. Section 3 provides a detailed 139
description of the proposed fingerprint super-resolution al- 140
gorithm. Section 4 discusses our experimental setup and 141
the results obtained. Finally, in Section 5, we conclude the 142
paper with a summary of our findings and contributions. 143

2. Related Work 144

2.1. Low-quality fingerprint images processing 145

Before the rapid development of machine learning, finger- 146
print image enhancement typically utilized Gabor filtering 147
algorithms[14]. Given that fingerprint images have dis- 148
tinct frequencies and orientations in their ridge and val- 149
ley patterns, Gabor filters[14], known for their selectivity 150
in frequency and orientation, were extensively researched 151
for optimization in fingerprint enhancement. Feng et al. 152
[11]proposed a method based on Gabor filtering to estimate 153
the local ridge orientations in enhanced fingerprint images. 154
Additionally, Chikkerur et al.[6] introduced a technique for 155
fingerprint enhancement using two-dimensional Short Time 156
Fourier Transform (STFT) analysis in the frequency do- 157
main. This method involves using STFT to estimate the 158
probability of ridge directions and frequencies, ultimately 159
enhancing the fingerprint based on these orientations, fre- 160
quencies, and angles. 161

Beyond these, enhancement methods based on the To- 162
tal Variation (TV) [32, 33] image model were also com- 163
monly used for fingerprint images. These methods decom- 164
pose low-quality fingerprint images into texture and cartoon 165
components. Building on this, a model based on Adap- 166
tive Directional Total-Variation (ADTV) was proposed [33]. 167
This model enhances low-quality fingerprint images by in- 168
tegrating scale and directional features to eliminate struc- 169
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tured noise. As machine learning technology continued to170
evolve, Dictionary Learning was first applied in studies re-171
lated to the enhancement of low-quality fingerprint images.172
Cao et al. [4] developed a dictionary learning-based method173
to estimate the orientation and frequency fields of low-174
quality fingerprint images for enhancement. Moreover, Liu175
et al. [19] proposed a method using sparse representation of176
multi-scale image blocks for the segmentation and enhance-177
ment of low-quality fingerprint images. In this method, Ga-178
bor elementary functions were used to build a dictionary,179
and a sparse representation method based on multi-scale im-180
age blocks was iteratively applied to reconstruct fingerprint181
images.182

2.2. Super-resolution reconstruction of deep convo-183
lutional neural networks184

Although research on super-resolution reconstruction[31]185
of fingerprint images is scarce, a vast array of super-186
resolution reconstruction methods based on deep convolu-187
tional neural networks (CNNs) has been proposed in the188
field of computer vision. A critical aspect of this study189
is to explore how these novel super-resolution deep CNNs190
can be applied to the super-resolution reconstruction of fin-191
gerprint images. A deep CNN named SRCNN (Super-192
Resolution Convolutional Neural Network) [9] was the first193
to apply deep learning methods to image super-resolution194
tasks. This algorithm initially enlarges low-resolution im-195
ages using bicubic interpolation and then employs three196
convolutional layers for feature extraction and representa-197
tion, non-linear mapping, and reconstruction. In 2016, an198
improved version of SRCNN, known as FSRCNN (Fast199
Super-Resolution Convolutional Neural Network)[10], was200
proposed. This model inputs low-resolution images directly201
into the neural network and uses deconvolution operations202
to upscale the image, directly outputting high-resolution im-203
ages. Shi et al.[25] proposed an enhanced structure, ES-204
PCN (Efficient Sub-Pixel Convolutional Network), which205
replaces deconvolution layers with a sub-pixel convolution206
layer, rearranging feature maps to increase image resolu-207
tion.208

Kim et al.[13] introduced the ResNet structure into209
super-resolution reconstruction networks, proposing VDSR210
(Very Deep Super-Resolution)[15]. Building on this, Tong211
et al.[30], drawing inspiration from the DenseNet struc-212
ture, proposed SRDenseNet, which deepens the network213
layers and tested three scales of SRDenseNet structures.214
Lai et al.[16] addressed the issues faced by single magni-215
fication super-resolution networks at high magnifications216
(such as 8x) and proposed LapSRN (Laplacian Pyramid217
Super-Resolution Network). Addressing the problem of218
high-frequency detail loss in super-resolution reconstruc-219
tion tasks, Ledig et al.[17] introduced SRGAN (Super-220
Resolution Generative Adversarial Network), which uses221

content loss functions and adversarial loss functions to en- 222
hance the visual effect of super-resolution reconstruction 223
images. This comprehensive exploration of deep learning- 224
based super-resolution techniques opens up new possibil- 225
ities for enhancing the resolution of fingerprint images, a 226
crucial aspect of biometric security and identification. 227

3. Methodology 228

3.1. Overview of the Proposed Algorithm 229

In this research, we focus on the deep learning-driven 230
transformation of low-resolution (LR) to high-resolution 231
(HR) fingerprint images using the Densely Connected Pyra- 232
mid Generative Adversarial Network (DCP-GAN). Our ap- 233
proach is encapsulated in a comprehensive framework, il- 234
lustrated in Fig.2, which outlines the process encompass- 235
ing both offline training and online testing stages. Initially, 236
in the offline training, we curate paired datasets of LR and 237
HR fingerprint images. Subsequently, in the online testing 238
phase, the network utilizes the learned mapping to process 239
LR inputs and generate super-resolved HR fingerprint im- 240
ages. The ultimate goal of DCP-GAN is to master the in- 241
tricacies of fingerprint details, enhancing the image quality 242
for improved identification accuracy. 243

3.2. The Densely Connected Pyramid Generative 244
Adversarial Networks (DCP-GAN) 245

In this study, we introduce a novel approach for fingerprint 246
image enhancement using a Densely Connected Pyramid 247
Generative Adversarial Network (DCP-GAN). This net- 248
work employs a multi-level feature-extracting generator for 249
image super-resolution and a discriminator that discerns the 250
authenticity of the generated images. The adversarial pro- 251
cess continues until a Nash equilibrium is reached, allowing 252
the generator to create highly realistic high-resolution fin- 253
gerprints. The detailed structures of both the generator and 254
the discriminator will be discussed in subsequent sections, 255
with their architectures depicted in Fig.3. 256

3.2.1 Densely Connected Pyramid Generator 257

Super-resolution networks differ from U-net structures in 258
image segmentation, as they directly apply convolutions at 259
high resolutions rather than using encoder-decoder architec- 260
tures. Initially, these networks employed bicubic interpola- 261
tion for upscaling, followed by convolution for reconstruc- 262
tion, leading to higher computational and memory demands 263
due to the high-dimensional operations involved. To min- 264
imize high computational and memory costs, the network 265
inputs low-resolution images and employs a deep convolu- 266
tional network to learn and extract features, followed by an 267
upsampling layer at the end for high-resolution reconstruc- 268
tion, forming the generator. The generator’s architecture is 269
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Figure 2. The whole framework of our proposed method for enhancing fingerprint images from low to high resolution using DCP-GAN.

showcased in Fig.3(a).270

Dense Blocks for Enhanced Information Sharing:271
The generator incorporates Dense Blocks to maximize272
inter-layer information sharing, contrasting with ResNet’s273
direct feature map summation. Short paths are established274
between each layer and every other layer in DenseNet, en-275
hancing robust information and mitigating the vanishing-276
gradient problem. The introduced Dense Blocks concate-277
nate feature maps from preceding layers, each containing278
6 convolutional layers with a 1×1 bottleNeck layer, 3×3279
convolution layer, and batch normalization, activated by280
LeakyReLU. Skip connections between these blocks facili-281
tate feature fusion across levels.282

Pyramid Blocks for Multi-Scale Feature Capturing:283
DCP-GAN introduces Pyramid Blocks, and each Pyramid284
Block employs four kernel sizes (3×3, 5×5, 7×7, 9×9) in285
parallel to integrate image details across various scales. Ad-286
ditionally, akin to DenseNet, we also employ a Dense block287
to densely connect the outputs between two pyramid blocks,288
which effectively harnesses information from various net-289
work layers, facilitating the construction of a densely con-290
nected pyramid generator. Subsequently, the concatenated291
feature maps from all pyramid blocks serve as input for the292
subsequent upsampling and reconstruction blocks.293

Efficient Multi-Scale Upsampling: The model features294
a multi-scale architecture for different magnification lev-295
els, sharing foundational information during training. The296
upsampling layer uses sub-pixel convolution (PixelShuf-297
fle Layer) with a stride of r which denotes the upscaling298
zoom factor, more efficient than deconvolution, for rear-299
ranging the feature maps of size W ×H × (C × r2) to a300

high-resolution image of Wr ×Hr ×C. The DCP-GAN’s 301
three output layers set the scaling factor r to 2, 3, and 4 for 302
2x, 3x, and 4x magnification, respectively. For instance, a 303
128×128 input is upscaled to outputs of 256×256, 384×384, 304
and 512×512. 305

3.2.2 Discriminator Network 306

In the DCP-GAN framework, the discriminator plays a cru- 307
cial role, tasked with distinguishing between authentic high- 308
resolution fingerprint images and super-resolution recon- 309
structed images produced by the generator. Given the gen- 310
erator’s capability to create super-resolution images at three 311
different magnification levels, three distinct discriminators 312
are designed, each tailored to a specific resolution. As illus- 313
trated in Fig.3(b), each discriminator is equipped with eight 314
convolutional modules. These modules are a concatenation 315
of a convolutional layer, batch normalization, LeakyReLU 316
activation, and a maxpooling layer. The convolutional lay- 317
ers across all modules feature a kernel size of 3 × 3 and a 318
stride of 1 × 1. Except for the first maxpooling layer, all 319
others are sized at 2× 2. For discriminators targeting mag- 320
nification levels of 2×, 3×, and 4×, the first maxpooling 321
layers are sized at 2 × 2, 3 × 3, and 4 × 4, respectively. 322
Following the convolutional layers, the network integrates 323
a fully connected layer and a Sigmoid activation layer to 324
output the classification result. An input of an authentic 325
high-resolution image results in an output of 1, whereas a 326
super-resolution reconstructed image yields an output of 0. 327
Beyond the final output layer, this study also extracts inter- 328
mediate feature layers, enhancing the discriminator’s ability 329
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Figure 3. Two main components of the DCP-GAN architecture
for fingerprint image super-resolution: (a) the densely connected
pyramid generator, which is responsible for image reconstruction,
and (b) the feature consistent discriminator, which evaluates the
authenticity of the generated images.

to identify fingerprint features.330

3.3. Loss Function331

In order to quantitatively assess the effectiveness of the332
generated images and the performance of the network, the333
DCP-GAN model incorporates the Mean Squared Error334
(MSE) and the Structural Similarity Index (SSIM) as part335
of its loss function. The MSE measures the pixel-level dif-336
ferences between the super-resolution image and the origi-337
nal high-resolution image. Conversely, SSIM evaluates the338
structural similarity between the two images. The loss func-339
tion of the discriminator in the DCP-GAN model for a sin-340
gle image is shown as follows:341

LG = MSE(S,H) + λ1
1

N

N∑
p=1

SSIM(Sp, Hp) (1)342

where S and H are the super-resolution and ground truth343
high-resolution fingerprint images, Sp and Hp are the local344
neighborhoods of pixel p in the generated and ground truth345
images; N denotes the total number of pixels in the finger-346
print image, and λ1 is a parameter used to adjust the weights347
of the Mean Squared Error (MSE) and the Structural Simi-348
larity Index (SSIM).349

In addition to the adversarial loss, the DCP-GAN model 350
utilizes a feature consistency loss, referenced in [23], to en- 351
sure that the super-resolution reconstructed images main- 352
tain consistency with the real high-resolution fingerprint im- 353
ages in terms of the hierarchical feature maps generated by 354
the discriminator. The feature consistency loss is defined 355
as: 356

LC =

M∑
s=1

||Fs(S))− Fs(H)|| (2) 357

where M is the number of feature vectors, and Fs repre- 358
sents the image feature vector generated by the discrimi- 359
nator. The objective during the training of the generator is 360
to minimize the distance between the feature vectors of the 361
generated images and those of the authentic high-resolution 362
images. Conversely, the training objective for the discrimi- 363
nator is the opposite. 364

The adversarial loss is used to improve the ability of 365
the discriminator to differentiate between authentic high- 366
resolution fingerprint images and the super-resolution re- 367
constructed images produced by the generator. The adver- 368
sarial loss is formally defined as: 369

LD = EH∼pH
[log(D(H))]+EL∼PL

[1−log(D(G(L)))](3) 370

where H is the high-resolution fingerprint as input of the 371
discriminator and L is the low-resolution fingerprint as in- 372
put of the generator; G(·) is the output of the generator and 373
D(·) is the output of the discriminator; E(·) denotes the ex- 374
pectation operator. The discriminator is tasked with classi- 375
fying whether the input image is generated or a real high- 376
resolution fingerprint and thus its output is a binary value. 377

Finally, the content loss, feature consistency loss, and ad- 378
versarial loss are integrated to formulate the complete loss 379
function for the DCP-GAN model. The combined loss func- 380
tion is defined as: 381

LDCP−GAN = LG + λ2(LC + LD) (4) 382

where λ2 is a parameter that balances the content loss and 383
the adversarial loss. The final aim is to train the network to 384
generate super-resolution images that are structurally and 385
feature-wise similar to the original high-resolution images. 386

4. Experiments 387

4.1. Datasets 388

This chapter mainly uses the FVC database, fingerprint 389
database of young children, and adult high-resolution fin- 390
gerprint database for related algorithm research. The adult 391
high-resolution fingerprint database is mainly used for deep 392
neural network training data, while the FVC database and 393
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fingerprint database of young children are mainly used for394
algorithm performance verification.395

FVC Database: FVC databases are generally high-396
quality, and the official fingerprint matching standards are397
provided, making it a popular database for fingerprint398
matching algorithm research. The number of images in each399
database is 100 fingers in database A, 10 fingers in database400
B, and 8 images of each finger, collected by different sen-401
sors, with a resolution of about 500 dpi. To better com-402
pare with other methods, we choose FVC2000DB3 B and403
FVC2004DB3 B in our experiments.404

Fingerprint Database of Young Children: Due to the405
smaller size and edge structure of young children’s finger-406
prints compared to adults, if existing methods are directly407
used, the accuracy of young children’s fingerprint recogni-408
tion is lower than that of adults. Therefore, we established a409
fingerprint database collected from 200 fingers of 2-5 year410
old children to test the proposed algorithm. Figure 5 shows411
some examples of fingerprint images from the fingerprint412
database. The size of each fingerprint image is 600 × 800,413
with a resolution of 1000 dpi. This fingerprint database414
contains 2000 1000dpi fingerprint images from 200 fingers,415
with 10 images per finger.416

High Resolution Fingerprint Database: To train the417
proposed deep networks, a large number of training data is418
required including the paired low and high resolution finger-419
print images, so we additionally collected and established a420
high-resolution fingerprint database. This database uses an421
optical single finger fingerprint capture device to capture422
single finger fingerprint images of volunteers, with an im-423
age size of 600x800 pixels, with a resolution of 1000dpi.424

4.2. Experimental protocol425

The DCP-GAN model proposed in this algorithm is built426
using Python programming language and PyTorch deep427
learning framework. Hardware environment usage In-428
tel Xeon E5-2620v4@2.1GHz CPU And use NVIDIA429
GeForce RTX2080Ti GPU for acceleration operations. The430
model is trained using an Adam optimizer with an initial431
learning rate set to 0.001.432

This chapter first conducts network structure ablation ex-433
periments on deep convolutional neural networks, mainly to434
verify the effectiveness of the proposed DCP-GAN partial435
structure in this chapter. The validation structures mainly436
include DenseBlock, PyramidBlock, and generative adver-437
sarial structures. Firstly, the generative adversarial part of438
DCP-GAN is removed, and only the content loss function439
used by the generator is retained. This structure is called440
DCP-Net; Next, remove PyramidBlock from the network441
structure, which is called DC Net. Finally, remove the442
DenseBlock from the network, and the network structure443
is called SR Net. Train SRNet, DC Net, DCP Net, and444
DCP GAN using the same training data to compare the per-445

Network PSNR SSIM
500dpi 750dpi 1000dpi 500dpi 750dpi 1000dpi

SRNet 24.62 24.50 24.48 0.9012 0.8941 0.8853
DC-Net 27.13 26.93 26.85 0.9040 0.8999 0.8939

DCP-Net 27.52 27.32 27.24 0.9088 0.9035 0.8973
DCP-GAN 27.76 27.54 27.44 0.9111 0.9037 0.8977

Table 1. Psnr and ssim of different network structures on finger-
print database of young children.

formance differences of different network structures. The 446
network structure ablation experiment mainly compares the 447
peak signal-to-noise ratio (PSNR) and structural similarity 448
(SSIM) of the image. 449

This experiment uses the FVC database and fingerprint 450
database of young children to verify the effectiveness of 451
different super-resolution reconstruction methods on finger- 452
print matching. To facilitate comparison with other litera- 453
ture, this article uses the open-source C# fingerprint match- 454
ing algorithm architecture. The matching algorithm uses 455
M3gl[21] and adopts the same matching scheme: pairwise 456
matching of the same finger, matching of different fingers 457
using the same number, all images are downsampled to 458
low resolution by magnification, and then reconstructed to 459
500dpi by super-resolution for matching. The accuracy in- 460
dex of matching is mainly obtained through the Detection 461
Error Trade off (DET) curve. The main indicator of the 462
curve is Equal Error Rate (EER). This experiment evaluates 463
the super-resolution reconstruction effect through the above 464
matching indicators, and the error rate parameters are as low 465
as possible. 466

4.3. Ablation Study on Network Architecture 467

This section uses a high-resolution fingerprint database of 468
1000dpi for ablation experiments to verify the effectiveness 469
of different network structures. Table1 shows the PSNR and 470
SSIM indicators of high-resolution fingerprint databases 471
with different network structures. It can be seen that as the 472
network structure becomes more complex, the PSNR and 473
SSIM gradually improve. 474

Fig.4 shows an example image of super-resolution re- 475
construction of fingerprint images with different network 476
structures. From the figure, it can be seen that the images 477
generated by SRNet have significant texture direction er- 478
rors. The overall ridge direction field of the image generated 479
by DC Net is basically accurate, but the adhesion of adja- 480
cent ridges leads to the appearance of incorrect ridges. The 481
image lines generated by DCP Net are basically correct, but 482
there are still errors in the detailed features. The image lines 483
generated by DCP-GAN have accurate orientation, better 484
restoring detailed features, and are closer to the target im- 485
age. Through the above experiments, it has been proven that 486
the addition of Dense Block, Pyramid Block, and Genera- 487
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Figure 4. A sample of a 250 dpi low-resolution fingerprint and
corresponding 500, 750, and 1000 dpi high-resolution images en-
hanced by different networks on FVC2000 DB3 B 101 1.

Figure 5. The low-resolution fingerprints of FVC2000DB3 B
101 1 downsampled by scale factors of 2, 3 and 4 from row 1
to 3 and the corresponding super-resolution results of 500 dpi gen-
erated by using different methods.

tive Adversarial Structure can effectively improve the effec-488
tiveness of fingerprint super-resolution reconstruction.489

4.4. Comparison with other methods490

In this experiment, we compare the proposed deep learning491
based method with other methods including the Bicubic in-492
terpolation method and the Yang’s method for fingerprint493
image super resolution on both the fingerprint database of494
young children and FVC database.495

4.4.1 FVC database496

Fig.5 shows the comparison of FVC2000DB3 B super-497
resolution reconstructed images generated by different498
methods. From the figure, it can be seen that the image499
generated by Bicubic is blurred. The images generated by500
Yang[8], Singh[26], and Bian[2] have higher sharpness, but501

Figure 6. Comparison of the DET curves by different super-
resolution methods with zoom factor 4 on FVC2000DB3 B.

Metrics
zoom
factor

Method
Bicubic Bian Yang Singh Proposed

EER
(%)

×2 8.31 5.46 8.31 6.17 4.52
×3 9.98 8.73 9.09 10.81 7.04
×4 17.22 16.09 17.18 17.04 9.76

Table 2. Comparison of EER of different zoom factors with differ-
ent super resolution methods on FVC2000DB3 B.

they all have the problem of losing details, and Bian’s re- 502
sults have more loss of grayscale information. The DCP- 503
GAN image proposed in this article is clearer and can better 504
preserve detailed information. 505

In terms of fingerprint matching, this article conducted 506
matching tests using the FVC2004DB3B database, and the 507
matching DET curve is shown in Fig.6. The EER perfor- 508
mance indicators are shown in Table 2. Due to the exper- 509
imental approach of downsampling by magnification and 510
reconstructing the super-resolution to 500dpi, the higher 511
the magnification, the smaller the input image size and the 512
greater the difficulty. Therefore, the higher the magnifica- 513
tion, the higher the error rate of the experimental results. 514
From Fig.6, it can be seen that the image DET curve gen- 515
erated by DCP-GAN is lower than that of the bicubic in- 516
terpolation. From Table 2, it can be seen that compared to 517
the bicubic interpolation, the EER of DCP-GAN at 2, 3, 518
and 4 times magnification decreased from 5.46%, 8.73%, 519
and 16.09% to 4.39%, 7.04%, and 9.76%, respectively. The 520
larger the magnification, the more obvious the advantage. 521

4.4.2 Fingerprint Database of Young Children 522

This section evaluates various super-resolution algorithms 523
using fingerprint database of young children. Fig.7 displays 524
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Figure 7. A sample of low-resolution fingerprint of 250 dpi and
the super resolution results of 500, 750 and 1000 dpi from the first
to the third row by using different methods on fingerprint database
of young children.

Metrics dpi
Method

Bicubic Yang Original Proposed

EER
(%)

500 9.45 8.12 7.42 7.87
750 7.00 6.24 4.96 5.77

1000 6.26 5.61 4.15 4.95

Table 3. Comparison of EER on the young children fingerprint im-
ages of different resolutions by different super resolution methods.

high-resolution young children fingerprint images produced525
by different methods. Notably, the Bicubic enlargement526
appears blurry, especially in densely textured areas (red527
box), hindering detailed feature distinction. Yang[8]’s en-528
largement exhibits improved sharpness but introduces se-529
vere noise, leading to unclear texture in the red box due to530
line accumulation. Contrastingly, DCP-GAN produces sig-531
nificantly clearer images, demonstrating high sharpness and532
smooth edges in sparse textures and effectively distinguish-533
ing ridges even in densely textured areas.534

Subsequently, fingerprint matching is conducted on the535
infant database, resulting in DET curves (Fig.8) illustrat-536
ing DCP-GAN’s superiority over Bicubic and Yang, align-537
ing closely with the target high-resolution curve. Tables 3538
present EER performance indicators, showing DCP-GAN539
outperforming other methods. For infants aged 0-2, DCP-540
GAN achieves EERs of 29.79%, 26.69%, and 26.19%, sur-541
passing Yang’s 31.78%, 29.27%, and 29.29%. Similarly,542
for 2-5-year-olds, DCP-GAN achieves EERs of 7.87%,543
5.77%, and 4.95%, outperforming Yang’s 8.12%, 6.24%,544
and 5.61%. Notably, DCP-GAN’s advantage becomes more545
pronounced with higher magnification and demonstrates546
lower matching error rates, emphasizing the efficacy of high547

Figure 8. Comparison of the DET curves by different super-
resolution methods with zoom factor 4 on young children finger-
print images.

dpi in reducing errors. 548

5. Conclusion 549

This paper has presented a densely connected pyramid gen- 550
erative adversarial network (DCP-GAN) for finger print 551
super-resolution. The deep network of DCP-GAN consists 552
of a densely connected pyramid generator for image recon- 553
struction and a feature consistent discriminator for distin- 554
guish the input image as generated or real. The densely skip 555
connections and pyramid convolution block are added to 556
make the full use of multi-level features for reconstruction 557
of high resolution fingerprints. In discriminator, a feature 558
consistent component is added to enforce the feature consis- 559
tency between the generated and real fingerprints. The pro- 560
posed method is tested on the fingerprint database of young 561
children and FVC database. The experiment results show 562
that the proposed method achieved better performance than 563
other methods. The super resolution method can provide 564
an effective way to enhance the fingerprint recognition of 565
young children. 566
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