Learning from Model Rankings Improves Blind Super-Resolution
Image Quality Assessment

Junlin Chen!, Peibei Cao?, Guangtao Zhai', Xiaokang Yangl, Weixia Zhangl*

Abstract—Image super-resolution (SR) aims to generate a
high-resolution (HR) image from a low-resolution (LR) input.
Traditionally, full-reference image quality assessment (FR-IQA)
models have been widely used to evaluate the perceptual quality
of super-resolved images, relying on pristine reference images
as the gold standard. However, in real-world SR applications,
such reference images are often unavailable, posing challenges
for the use of FR-IQA. While blind image quality assessment
(BIQA) models can assess the perceptual quality of super-
resolved images without requiring a reference, there remains
a lack of comprehensive studies evaluating the effectiveness of
existing BIQA models for real-world SR tasks. This dilemma
can largely be attributed to the high cost of subjective testing
required to collect sufficient human quality annotations, which
in turn hinders the development of effective SR-IQA models.
In this study, we tackle this challenge with a data-efficient
approach. We first generate super-resolved images from LR
inputs using state-of-the-art real-world SR methods. Then, we
use the maximum differentiation competition (MAD) to select
a diverse set of images for subjective testing, allowing us to
efficiently gather human preferences and assess the alignment
between BIQA model predictions and human judgments. The
resulting global ranking of SR methods not only indicates the
relative performance of recent real-world SR models, but also
gives us an opportunity to develop a new BIQA model tailored
for real-world SR-IQA. By utilizing the global rankings of SR
algorithms as prior knowledge, we can refine pretrained BIQA
models using vast amounts of super-resolved images without
any supervisory signal. Experimental results show that our ap-
proach substantially enhances IQA performance for real-world
SR while preserving robust predictive accuracy across various
distortion scenarios. The dataset and the code are available at
https://github.com/cschenjunlin/SR-IQA-SMC25.

I. INTRODUCTION

Image super-resolution (SR) aims at reconstructing a high-
resolution (HR) image from its low-resolution (LR) coun-
terpart, which is inherently challenging due to its ill-posed
nature, particularly when dealing with large scaling factors
(e.g., x4 SR). Classical SR algorithms either exploit internal
similarities within an image [1], [2], or learn LR-to-HR map-
ping functions from external paired images [2], [3]. Since the
advent of SRCNN [4], deep neural networks (DNNs) have
increasingly dominated the field of SR [5]-[8]. Early DNN-
based methods formulate the SR task by assuming simple
and known degradation models (e.g., bicubic interpolation),
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some of which also leverage generative adversarial networks
(GANs) to enhance the visual quality of super-resolved
images [9], [10]. Despite the significant successes of these
methods, they struggle to handle real-world SR where the
degradation model is more complex or even unknown. To
better simulate real-world degradation, BSRGAN [11] uses
a degradation model consisting of randomly shuffled blur,
downsampling, and noise operations. Real-ESRGAN [12]
further enhances this approach by employing a high-order
degradation model. LDL [13] enhances GAN-based methods
by generating an artifact map to stabilize the training process.
Recent years have witnessed the emergence of a new
paradigm that leverages diffusion models [14] for the real-
world SR task. StableSR [15] harnesses diffusion priors from
pre-trained text-to-image models, achieving remarkable SR
results through a time-aware encoder, fidelity-controllable
module, and progressive sampling. DiffBIR [16] decouples
the real-world SR problem into a regression-based content
reconstruction stage and a diffusion-based details enhance-
ment stage. SeeSR [17] utilizes a degradation-aware model to
extract more reliable semantic information from LR images,
guiding a diffusion model to generate rich and semantically
accurate details. ResShift [18] enhances generation efficiency
by modeling the residual shift between LR and HR im-
ages using a Markov chain. SinSR [19] further accelerates
ResShift by distilling it into a one-step sampling model.
Image quality assessment (IQA) has been widely used
to evaluate the quality of super-resolved images, which is
generally categorized into subjective IQA and objective IQA.
Subjective IQA involves human participants rating the qual-
ity of images through formal testing procedures. Although
subjective IQA is the most reliable method, it is limited
by its high labor and time costs. Objective IQA acts as a
proxy for subjective IQA, quantifying image quality using
computational models. Full-reference IQA (FR-IQA) metrics
(e.g., PSNR and SSIM [20]), which assess the quality of a
test image by comparing it to a pristine reference image, have
long been the de facto standard for evaluating SR algorithms.
However, pristine HR images are typically unavailable or
do not even exist in real-world SR scenarios. Blind image
quality assessment, which directly estimates the quality of a
test image, has been utilized as a performance measure for
SR algorithms [21]-[24]. However, research on developing
reliable blind SR-IQA models remains limited, particularly
for the emerging real-world SR task [25]. Previous studies on
SR-IQA have primarily relied on datasets containing super-
resolved images generated by legacy SR algorithms [26],
[27]. As demonstrated in Sec.III, task-specific SR-IQA meth-
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Fig. 1: The schematic of our subjective testing in the SR model ranking, and our training scheme.

ods [27]-[29] trained on such datasets struggle to generalize
to the novel distortion patterns introduced by recent SR
techniques (e.g., diffusion-based methods). This limitation
is largely attributed to the phenomenon of significant sub-
population shifts [30], [31].

While collecting extensive human quality annotations on
super-resolved images would be highly beneficial for eval-
uating SR methods and training blind SR-IQA models,
the extremely high annotation costs render this approach
impractical [32]. In this work, we take steps to address the
above issues. Our primary motivation stems from a common
phenomenon: humans can make model-level comparisons
based solely on their prior impressions. For example, people
can easily conclude that GPT-4 is more powerful than GPT-
3.5 without needing to compare every conversation generated
by these two models. This insight suggests that if we know
the overall relative performance ranking of two SR models,
we can readily determine the average quality ranking of
the super-resolved image batches produced by these models,
without the need for time-consuming subjective evaluations
on each individual image. It remains to obtain the model-
level ranking information of SR algorithms. This approach
automatically samples diverse and adaptive sets of images
that best differentiate each pair of SR methods, all while
adhering to a limited human annotation budget. The selected
image pairs then undergo formal subjective testing, resulting
in pairwise preference data that is subsequently used to
derive a global ranking of the competing SR methods.

In theory, any BIQA model (pre-trained on existing IQA
datasets) can be adapted to our task by regularizing its quality
predictions for unannotated super-resolved images to align
with the global rankings of SR models. In practice, we
achieve this by computing the average quality predictions
for super-resolved images generated by different SR methods
and minimizing the statistical discrepancy between these
predictions and the global model rankings using fidelity
loss [33]. In summary, our contributions are three-fold:

« We construct a benchmark by collecting human pref-

erences on super-resolved image pairs generated by
different SR algorithms. These pairs are identified by
the MAD competition as the most informative to derive
the global model ranking of competing SR algorithms.

« We compare a range of BIQA models on our bench-
mark, revealing their relative strengths and weaknesses
as metrics for real-world SR.

o We adapt pre-trained BIQA models for real-world SR
by aligning their average quality predictions with global
model rankings using a fidelity loss, thereby better
handling novel distortion patterns from emerging SR
algorithms.

II. METHODOLOGY

In this section, we begin by describing the creation of a
large set of super-resolved images using various SR methods.
We then outline the procedure of MAD competition [34] for
globally ranking these SR methods. Next, we present the
calibration process of a computational model for SR-IQA in
detail. The overall framework is illustrated in Fig. 1.

A. Subjective Testing

Since all super-resolved images are ultimately viewed by
humans, subjective testing remains the most reliable ap-
proach to obtain the overall performance rankings of different
SR methods. Due to the time-consuming and labor-intensive
nature of subjective testing, we adopt an efficient sample
selection strategy that automatically chooses adaptive and
diverse images for evaluation. Taking inspiration from the
MAD competition methodology [32], [35], we start from an
input LR image domain 2~ and choose a set of SR methods
F ={fu}N_,, where each method produces a super-resolved
image f,(x) from an input LR image x € 2 . Specifically, for
each of two different SR methods f; and f;, we iteratively
select the k-th image £%) that best differentiates between
them by solving the following problem:

W = argmax Dy (fi(x), f;(x)) + MDa(x,#) (1)
x€ZX\S
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Fig. 2: Screenshot of the graphic user interface used for the
subjective testing.

where . = {)E(i) 5:11 is the set of k— 1 image that have been
selected according to Eq. (1). D; is a quantitative measure
to approximate the perceptual distance between f;(x) and
fj(x), while D, quantifies the semantic distance between x
and the set ., with A; governing the trade-off between the
two terms.

The identified images are screened to human subjects in
formal subjective testing, where the two-alternative forced
choice (2AFC) method is employed. In each trial, a subject is
presented with a pair of images produced by two different SR
methods {fi(x), fj(x)}, and is asked to choose the one with
higher quality. A screenshot of the graphic user interface used
in our subjective testing is shown in Fig. 2. We select the top-
K (K < |Z'|) images for each pair of SR methods {f;, f;}.

Given N SR methods, we obtain (NL# SR image pairs
in total. We organize the human preference data collected
from the subjective testing into an N x N matrix C, where
C;; represents the number of votes for f; over f;. Finally, we
adopt maximum likelihood for multiple options [36] under
the Thurstone’s model [37] to infer the global ranking of .7,
maximizing the log-likelihood of the count matrix C:

L(p;C) = Zcijlog(q)(ﬂi —U;)) )
ij

where U = [U, Uy, ..., uy] is the vector of global ranking
scores, @ is the standard Normal cumulative distribution
function, and Y ; u; = 0.

B. IQA Model Calibration

We have selected the most discriminative subset of image
pairs from a large pool of super-resolved images through
the MAD competition for subjective testing. Next, we aim
to leverage the remaining set of unlabeled images, featuring
large-scale and rich semantics, to adapt a pre-trained BIQA
model tailored for SR.

Given an input LR image x, we have N super-resolved
images {f,(x)}\_, produced by N different SR methods. We
assume a pretrained BIQA model ¢,,(-) parameterized by w,
that has learned prior knowledge about image quality from
existing IQA datasets. Observing that distortion patterns from
specific SR methods are highly algorithm-dependent (see
Fig. 3), directly fine-tuning g,,(-) on these data may cause
overfitting to certain algorithms, compromising its learned
priors. To address this, we freeze the weights of ¢,,(-) and
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Fig. 3: Distortion patterns from specific SR methods.
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introduce a lightweight rectifier hg(-), which takes image
features from the visual encoder as inputs and generate a
tuple of scaling and shift parameters (a, ) to calibrate the
quality predictions of ¢, for super-resolved images generated
by N SR models as ag,(x)+ B, aligning them with the
global model rankings [, iy, ..., Uy]-

Specifically, given two SR methods fi(-) and fj(-), we
derive a binary label of their relative model ranking:

Lif >,
rij = 0.5 if Ui = [,Lj s (3)
0 otherwise

Inspired by [38], [39], we adopt a learning-to-rank method
under the Thurstone model [37], which estimates the prob-
ability that the average quality of a group of super-resolved
images {fi(xy)}5_, generated is higher than another group

{3 0e) Yooy as:

il = (5 (Eomy 0) Eoe Qf(”’”) L@

V2

where Q; = hg(gw(fi(+))), and the variance is fixed to one, ®
is the standard Normal cumulative distribution function. We



TABLE I: Comparison of 2AFC scores on RealSR-1K

General-purpose BIQA

NIQE

DBCNN  HyperlQA MUSIQ MANIQA CLIPIQA

LIQE Q-ALIGN  ARNIQA

0.5818 0.6237 0.6386 0.6166

0.6443

0.6294 0.6391 0.6732 0.6451

General-purpose BIQA

Task-specific SR-IQA

Ours

TOPIQ  Compare2Score  QualiCLIP+

NRQM

Human (Oracle)

DISQ  TADSRNet

0.6402 0.6518 0.6181

0.5995

0.5816 0.5553 0.7206 0.7767

TABLE II: 2AFC scores of ablation studies

Model 1
0.6644

Model 11
0.7101

Model IIT
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Model IV
0.7148
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Fig. 5: Global ranking scores of SR methods.

adopt the fidelity loss [40] as the statistical distance measure:

Cp(fix), fi(x)sw) = 1= [rifi({x Yy )
A=) =i(m}). )

Under the learning-to-rank paradigm, it is straightforward
to integrate human-rated IQA datasets for joint training /g (-)
across multiple datasets. Following a similar pipeline of
Egs. (3)-(5), we compute an additional fidelity loss term ¢;
using image pairs sampled from human-rated IQA datasets'.
This results in a semi-supervised learning loss function:

0=+ Mot (©)

where A, controls the trade-off between two terms.

III. EXPERIMENTS

In this section, we first describe the experimental setups.
We then present and analyze the results of subjective testing.
Finally, we compare BIQA models on our test set along with
public IQA datasets.

The only difference is that the binary label is inferred from the ground-
truth mean opinion scores (MOSs) instead of the global rankings as in
Eq. 3)
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Fig. 6: Visual comparison of super-resolved images produced
by different SR methods and the bicubic baseline.

A. Experimental Setups

We use 10,000 real-world LR images sourced from [41],
[42], and the Internet as the input domain 2°. These two
datasets predominantly contain natural scenes, reflecting
authentic degradation conditions encountered in real-world
super-resolution tasks.

We select 12 SR methods ranging from 2020 to 2024
to ensure broad coverage of diverse foundational mod-
els, including GAN-based models: USRGAN [8], Real-
ESRGAN [12], BSRGAN [11], LDL [13], and diffusion-
based approaches: DiffBIR [16], ResShift [18], SinSR [19],
StableSR [15], and SeeSR [17], as well as other advanced
methods: DASR [43], FeMaSR [44], RGT [45]. All methods
produce super-resolved images with a scaling factor of 4.

In Eq. (1), DISTs [46] and VGG-16 [47] are employed
as Dy and D, and we set the trade-off parameter A; to
0.1. We set K = 16, resulting in (') x 16 = 1056 paired
comparisons, which are viewed by 23 subjects (13 males and
10 females) with general knowledge of image processing. We
show the Spearman rank order correlation coefficient (SRCC)
values between the top-16 ranking and other top-K rankings
in Fig. 4, indicating stable ranking results (SRCC > 0.97
when K >= 8).



In addition to the global rankings of SR methods,
we also use the resulting dataset of approximate 1,000
image pairs to form a benchmark for BIQA models:
{(fl(x,\(k)>7f1(xA(k>))apljk}kK=1’ where L= {13"'7Nai 7& ./}7
and p;j; denotes the fraction of votes for i-th SR method
over the j-th SR method, based on the relative quality of the
super-resolved images for the k-th LR input. Following [48],
we use the 2AFC score to evaluate BIQA models, which
credits a BIQA model with a score of pg+ (1 —p)(1 —gq),
where p is the percentage of human votes and g € {0,1} is
the preference of the BIQA model. We term the resulting set
of image pairs with human annotations as RealSR-1K.

B. Implementation Details

Inspired by the strong generalization ability of the
CLIP [49] models, which serve as the vision backbone
across a wide range of tasks, we first train a CLIP-based
BIQA model g,, following a similar approach to [39]. We
adopt ViT-B/32 [50] as the visual encoder along and work
with a textual template aphotowithcquality, where ¢ € € =
{1,2,3,4,5} = {“bad”, “poor”, “fair”, “good”, “perfect”},
corresponding to a Likert-scale of five quality levels. By ap-
plying a softmax function to the cosine similarities between
the visual embedding and all textual embeddings, we obtain
the probability distribution p(c|x) over the five quality levels.
We then relate the discrete ¢ to continuous quality scores by
qw(x) =Y, plc|x) - ¢, where C =5 is the number of quality
levels. We train ¢,, on a combination of KonlQ-10k [51] and
PIPAL [52], encouraging the model to learn prior knowledge
of image quality from both photos captured in the wild and
those processed by perceptual image processing algorithms.
We train ¢,, using the AdamW optimizer [53] with an initial
learning rate of 5x 107°, and a weight decay of 0.001. To
adjust the learning rate throughout training, we employ a
cosine annealing scheduler with a period of 5 epochs.

After filtering out all images that overlap in content
with RealSR-1K, we are left with 8,377 unannotated super-
resolved images, which we denote as Z. This naturally
results in 8,377 x (]22) = 552,882 image pairs available for
IQA model calibration as illustrated in Sec. II-B. Once the
training of ¢g,, is complete, we freeze its weights and attach
a multi-layer perceptron (MLP) hg on top, which is then
jointly trained using & along with the same datasets used
for training ¢,,. During the IQA model calibration process,
we set the batch size of Z to 64, i.e., B= 64 in Eq. (4)
and Eq. (5). The rectifier g is optimized for 8 epochs with
an initial learning rate of 1 x 1073. We set the trade-off
parameter A, to 1. The training process took approximately
12 hours on a single NVIDIA RTX 4090 GPU.

C. Subjective Testing Results

We present the global ranking scores of SR models in
Fig. 5, where we have several useful observations. First, the
top-5 methods are all based on diffusion models, exactly
matching the recent trends in this field. Second, the leading
method, SeeSR [17], largely benefits from its degradation-
aware prompt extractor module, enabling it to reconstruct se-

mantically meaningful results from inputs with severe degra-
dation (see Fig. 6 (i)). Third, among GAN-based methods,
USRGAN [8] attains the highest ranking, despite being the
earliest one. This underscores the effectiveness of integrating
the flexibility of model-based methods into learning-based
methods. Fourth, despite the remarkable performance on
synthetic datasets, RGT [45] fails to generalize to the real-
world SR (see Fig. 6 (b)), suggesting the importance of in-
corporating generative priors for real-world super-resolution.

D. Evaluation of BIQA Models

Comparison of 2AFC scores on RealSR-1K In Ta-
ble I, we compare our method with 12 general-purpose
BIQA models: NIQE [21], DBCNN [56], HyperIQA [57],
MUSIQ [22], LIQE [39], MANIQA [24], Q-ALIGN [58],
CLIPIQA [23], TOPIQ [59], QualiCLIP [60], ARNIQA [61],
Compare2Score [62] and three tasks-specific SR-IQA meth-
ods: NRQM [27], DISQ [28], TADSRNet [29]. From these
results, we derive several key insights. First, although
NRQM, DISQ, and TADSRNet are specifically designed for
the SR-IQA task, their performance is inferior to that of
general-purpose BIQA models, with the exception of NIQE.
We attribute this to the novel distortion patterns introduced
by the latest SR models, which hinder task-specific SR-
IQA methods from transferring the knowledge acquired from
legacy SR distortions to unknown degradations. Second, Q-
Align and Compare2Score achieve higher 2AFC scores than
the other methods, highlighting the significant advantages
of multi-modal large language model (MLLM)-based ap-
proaches in terms of model capacity and training data scale.
Third, our method attains the highest performance despite
having a considerably smaller model capacity and less train-
ing data compared to MLLM-based methods, demonstrating
the effectiveness of our proposed semi-supervised learning
approach in leveraging unlabeled data to enhance quality
prediction for real-world SR.

Ablation Study We conduct ablation studies for different
model variants as follows:

Model I: Directly applying g, to predict the quality of
images in RealSR-1K without further calibration.

Model II: Training the rectifier hg solely on 2, without
leveraging other datasets.

Model III: Using our full model configuration but setting
the batch size of Z to 1.

Model IV: Training a BIQA model ¢, directly on the
combination of KonlQ-10k, PIPAL, and &, bypassing the
IQA model calibration process.

The results of these ablation experiments are presented in
Table II, leading to several key observations. First, Model I
exhibits limited generalization to RealSR-1K. This highlights
the need for an additional adaptation step to address the
subpopulation shift caused by the novel distortion patterns
introduced by emerging SR models. Second, with exposure
to &, Model II achieves a significantly higher 2AFC score
than Model I, demonstrating the effectiveness of using global
model rankings as pseudo labels to adapt a pre-trained
BIQA model to novel distortion scenarios. However, its



TABLE III: PLCC and SRCC results of BIQA models. The highest and second-highest results are indicated using bold and
underline, respectively. The symbol “~” indicates that the full dataset is used for evaluation but the corresponding BIQA

model is (partially) exposed to the same dataset

QADS [26] Mal7 [27] SRIQA-Bench [54] KonlQ-10k [51] KADID-10k [55] PIPAL [52]
BIQA Model PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC
NIQE 0327 0394  0.643 0.639  0.602 0.558 0.309  0.375 0.390 0.379 0.124  0.108
DBCNN 0.602  0.630 0.607 0.579  0.749 0.697 0.884  0.875 0.497 0.484 0428  0.443
HyperIQA 0.654 0660 0.712  0.687  0.733 0.677 0917 0906  0.506 0.468 0475  0.489
MUSIQ 0.768  0.772  0.781 0.762  0.763 0.728 0924 0929 0.575 0.556 0426  0.457
MANIQA 0.869 0872 0.879 0.870  0.817 0.799 0.686  0.682  0.560 0.512 0.676  0.695
CLIPIQA 0.578 0577  0.800 0.789  0.708 0.660 0.723  0.701 0.520 0.501 0.291 0.325
LIQE 0.780  0.790  0.751 0.714  0.757 0.721 0912 0928  0.667 0.662 0.550  0.564
Q-ALIGN 0.802  0.821 0.856  0.844  0.765 0.696 0.941 0.940 - - 0.543  0.548
ARNIQA 0.802 0.807 0.753 0.720  0.712 0.663 0.890  0.870  0.717 0.725 0.382 0422
TOPIQ 0.749 0756 0779  0.776  0.751 0.694 0.896  0.900  0.546 0.511 0.484  0.505
Compare2Score  0.830  0.865 0.863  0.847  0.726 0.689 0.939  0.931 - - 0.533  0.545
QualiCLIP+ 0716  0.723  0.788  0.770  0.745 0.671 0.901 0.898  0.618 0.610 0.449 0473
NRQM 0.722  0.727 - - 0.679 0.566 0479 0438  0.299 0.168 0.176  0.200
DISQ 0.423 0407 0448 04838  0.398 0.385 0468 0492  0.278 0.171 0.105  0.034
TADSRNet - - 0.724  0.639  0.569 0.474 0.146  0.155 0.302 0.231 0.124  0.138
Ours 0871 0.875 0.870 0.856  0.795 0.771 0918  0.925 0.745 0.746 0.680  0.699

performance remains inferior to our full model, further vali-
dating the efficacy of the proposed semi-supervised learning
process across multiple datasets. Third, the relatively low
performance of Model III highlights the challenge of directly
training a model on multiple datasets with significantly
different distributions. In contrast, the proposed two-stage
training scheme effectively addresses this challenge. Fourth,
due to the inherent noise in pseudo labels, the global model
rankings do not strictly apply to each individual list of super-
resolved images. Consequently, Model IV, which is trained
with a batch size of one, exhibits suboptimal performance.
In contrast, our full model leverages a significantly larger
batch size, allowing the averaged predictions to better align
with the global model rankings.

Further Testing We aim to verify the generalizability of the
BIQA models. Specifically, we evaluate BIQA models on the
full sets of: three SR-IQA datasets (QADS [26], Mal7 [27],
and SRIQA-bench [54]) and a dataset consisting of various
distortion types (KADID-10k [55]). We also evaluate BIQA
models on the test set of KonlQ-10k [51] and the validation
set of PIPAL. We present the SRCC and Pearson linear
correlation coefficient (PLCC) results in Table III, drawing
the following interesting observations: First, MANIQA gen-
eralizes well to datasets containing super-resolved images,
but it exhibits relatively weak performance on KonlQ-10k
and KADID-10k, highlighting a significant domain shift
between algorithm-dependent distortions and photorealistic
or synthetic distortions. Second, general-purpose BIQA mod-
els, particularly MLLM-based methods, demonstrate sig-
nificantly stronger generalization ability compared to task-
specific SR-IQA methods. This aligns with the prevalent use
of general-purpose BIQA models—rather than task-specific
SR-IQA models—as performance metrics in recent real-
world SR studies [15]-[18]. Third, the proposed method
presents strong generalization across various distortion sce-
narios, validating the effectiveness of our model design.

TABLE 1V: 2AFC scores of more BIQA models and our
versions

DBCNN  DBCNN (ours)
0.6391 0.6730

HyperIQA  HyperIQA (ours)
0.6386 0.6742

Application to Existing BIQA Models We apply the two-
stage IQA model calibration method to two additional BIQA
models: DBCNN [56] and HyperIQA [57]. We present the
2AFC scores on RealSR-1K in Table IV, from which we
observe that our method introduces significant performance
improvement over the baseline models. This underscores the
strong generalizability of our framework and its orthogonal-
ity to innovations in model architecture.

IV. CONCLUSIONS

We propose an SR-IQA framework that uses the MAD
competition to efficiently select representative samples for
subjective evaluation, enabling global SR model ranking
with minimal data. Leveraging this, we introduce a semi-
supervised calibration method to adapt a pre-trained BIQA
model to the distortion patterns of modern SR algorithms.
Experiments on the RealSR-1K benchmark show superior
performance and strong generalization across diverse distor-
tions. The training scheme also allows existing BIQA models
to be adapted to new distortion scenarios. In future work, we
will extend this framework to other image processing ap-
plications like low-light enhancement, deblurring, denoising,
and dehazing.
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